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Abstract Surface-confined DNA probes are increasingly
used as recognition elements (or presentation scaffolds) for
detection of proteins, enzymes, and other macromolecules.
Here we demonstrate that the density of the DNA probe
monolayer on the gold electrode is a crucial determinant of
the final signalling of such devices. We do so using redox
modified single-stranded and double-stranded DNA probes
attached to the surface of a gold electrode and measuring
the rate of digestion in the presence of a non-specific
nuclease enzyme. We demonstrate that accessibility of
DNA probes for binding to their macromolecular target is,
as expected, improved at lower probe densities. However,
with double-stranded DNA probes, even at the lowest
densities investigated, a significant fraction of the immobi-
lized probe is inaccessible to nuclease digestion. These
results stress the importance of the accessibility issue and of
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Introduction

The use of biomolecules, for example DNA, antibodies,
and enzymes, as effective recognition elements for molec-
ular sensing has led, during recent years, to analytical
devices with exceptional characteristics of versatility,
specificity and affinity [1-4]. Such recognition elements
are usually immobilized on a solid support to gain better
sensitivity, reduce interferences, and enable reusability [5—
9]. Optical techniques, for example SPR and ELISA, and
electrochemical biosensors all share this common feature
and are all based on the use of surface-confined biomolec-
ular recognition elements. Simple adsorption, cross-linking
with glutaraldehyde, and physical entrapment on mem-
branes are some of the procedures adopted to immobilize
biomolecules on solid supports [10]. Among these, use of
thiol end-labelled biomolecules to form self-assembled
monolayers on gold electrodes has increased impressively
in recent years, especially for DNA-based sensors [11].
These are primarily focused on the development of sensors
for detection of complementary DNA or RNA sequences
[12—16]. However, in recent years, DNA probes, especially
aptamers, have been also applied to the detection of non-
nucleic acid targets [17-20], including macromolecular
targets such as thrombin [21, 22], VEGF [23] and C-
reactive protein [24]. Another broad and important class of
analytes that can be detected via their interactions with
DNA are naturally occurring DNA binding proteins,
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transcription factors, and anti-DNA antibodies [25-27].
Finally, DNA probes have been also used as physical
scaffolds for presentation of small recognition elements
(usually antigens) to antibodies, thus expanding the range
of targets recognized by use of these techniques [28-31].
In all recent examples by our group and by other groups
that developed E-DNA signal-off sensors for electrochem-
ical detection of macromolecular targets a common feature
was always observed—a significant residual current signal
is obtained for all sensors, even at saturating target
concentrations[25, 26, 28, 29]. This raises the question
whether the residual current signal is because of a fraction
of the probes that are not accessible to target binding or
because of other reasons (for example, target bound probes
could still give a specific redox signal). Moreover, the
effect that packing density can have on the sensitivity and
efficiency of the DNA-target interaction could be of
importance because of the increasing use of surface-
confined DNA probes as recognition elements (or presen-
tation scaffolds) for detection of proteins, enzymes, and
other macromolecules. Recently, we and others have
stressed the importance of the density with which the
DNA probes are packed on the sensor for detection of the
hybridization event [32—-37]. However, because of different
steric and charge properties between proteins and DNA
sequences, earlier reports do not seem directly applicable to
the optimization of DNA sensors targeting macromolecules.
For this reason here we expand on this issue and address
the accessibility of proteins on DNA monolayers and the
effect of DNA probe density on the detection of DNA/
protein interactions using electrochemical DNA sensors.

Materials and methods
Reagents and DNA probes

Reagent-grade chemicals, including 6-mercapto-1-hexanol,
sulfuric acid, monobasic and dibasic potassium phosphate,
and sodium chloride (all from Sigma—Aldrich, St Louis,
Missouri, USA) were used without further purification.
Bovine pancreatic nuclease (deoxyribonuclease I, denoted
DNase I) was purchased from Sigma—Aldrich. This is an
endonuclease that hydrolyses double-stranded and single-
stranded DNA in the presence of divalent cations. DNase I
attacks each strand of DNA independently and the cleavage
sites are random [38].

The single stranded (ss) and double stranded (ds)-DNA
probes employed in this work were synthesized, labelled,
and purified by BioSearch, Tech (Novato, CA, USA) and
used as received. Their sequences are as follows:

1. ss-DNA probe: a 27-base, 5’ thiol-modified, 3’
methylene blue (MB)-modified probe DNA was used as
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ss-DNA probe. The 17 internal bases of this sequence are
complementary to the Salmonella gyrB gene [35]. The MB
redox moiety was conjugated to the 3’ end of the
oligonucleotide via succinimide ester coupling to a 3’
amino modification producing the probe sequence 5'-HS-
(CH,)s-CGTCAATCTTCTATTTCTCCACACTGC-
(CH;)-NH,-MB-3'.

2. ds-DNA probe: this probe is designed to have a two
self-complementary sequences forming a 10-base double-
stranded stem. The probe is modified with a thiol group at
the 5 end and with a methylene blue redox tag on a
thymine base along the double-stranded stem (underlined
below) and has the sequence 5'-HS-(CH,)s-CGGGCTA
TAT*(MB)AAGGGGCGTTTTCTTATATAG-3". Of note,
the double stranded region of the probe is specifically
recognized by the eukaryotic TATA-box binding protein
(TBP, a core component of the eukaryotic transcriptional
machinery).

TBP was obtained by expression of recombinant, his-tagged
proteins in Escherichia coli, as described previously [25].

Sensor fabrication

The sensors were fabricated using standard approaches [39]
that we reiterate in brief here. E-DNA sensors were
fabricated on rod gold disk electrodes (2.0 mm diameter,
BAS, West Lafayette, IN, USA). The disk electrodes were
prepared by polishing with diamond and alumina (BAS),
followed by sonication in water, and electrochemical
cleaning (a series of oxidation and reduction cycles in
0.5 mol L' H,SO,, 0.01 mol L' KC1/0.1 mol L™ H,SO,,
and 0.05 mol L' H,SO,). Effective electrode areas were
determined from the charge associated with the gold oxide
reduction peak obtained after the cleaning process. The
thiol-containing oligonucleotides we used are supplied as a
mixed disulfide of 6-mercapto-1-hexanol in order to
minimize the risk of oxidation. Thus the first step in sensor
fabrication is reduction of the probe DNA (100 pumol L)
for 1 h in a solution of 0.4 mmol L™ Tris(2-carboxyethyl)
phosphine hydrochloride (TCEP) in 100 mmol L™" NaCl,
10 mmol L™" potassium phosphate, pH 7. The so-reduced
relevant probe DNA was immobilized on the freshly
cleaned electrodes by incubating for 1 h in a solution of
1 mol L™! NaCl, 10 mmol L' potassium phosphate buffer,
pH 7. Different probe densities were obtained by control-
ling the concentration of probe DNA used during the
fabrication process, from 0.01 pmol L' to 1 umol L', We
note here that our previous study with similar probes
confirmed that probe density is linearly dependent on probe
concentration used during sensor fabrication in this range of
concentrations [35]. After probe immobilization the elec-
trode surface was rinsed with distilled, de-ionized water
passivated with 1 mmol L™' 6-mercaptohexanol in
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1 mol L™! NaCl, 10 mmol L' potassium phosphate buffer,
pH 7, for 2 h and followed by further rinsing with
deionized water. Sensors were stored in the dark in buffer,
under air, conditions that enable multi-month storage
stability [40].

Calculation of probe surface density

Probe surface density (i.e., the number of electroactive
probe DNA molecules per unit area of the electrode surface,
Niot) was determined by use of a previously established
relationship with ACV peak current [41] described by Eq.

(1):

sinh(nFE,./RT
Iavg(EO) = 2an'Ntot ( / )

cosh(nFE,./RT) + 1

(1)

where I,,4,(Eo) is the average AC peak current in a
voltammogram, n is the number of electrons transferred
per redox event (with our MB label n=2), F is the Faraday
current, R is the universal gas constant, 7 is the temperature,
E,. is the peak amplitude, and f is the frequency of the
applied AC voltage perturbation. Perfect transfer efficiency
was assumed (i.e., that all of the redox moieties participate
in electron transfer); errors in this assumption would lead us
to underestimate probe density. Experimentally, four differ-
ent frequencies were used (5, 10, 50, and 100 Hz), and the
average peak current was calculated to give the value of
Niot [42, 43]. To calculate mean probe densities from Ny,
we used the apparent surface area (see above).

Electrochemical measurements

The sensors produced as described above were tested at
room temperature using an Autolab (EcoChemie, Utrecht,
The Netherlands). Square-wave voltammetry (SWV) was

Probe
Nuclease

———

Fig. 1 To investigate the effect of probe density on the efficiency of
the interaction between a DNA probe self-assembled on the surface of
a gold electrode and a macromolecular target recognizing this probe,
we have used here a classic E-DNA sensor based on the use of an
electrode-bound, redox-tagged oligonucleotide probe. The stable and
reversible electrochemical signal generated by the redox label (here
methylene blue) conjugated to the probe is reduced on binding of the
target macromolecule (here nuclease enzyme). Because the interaction

recorded from —0.45 V to —0.05 V versus an external Ag/
AgCl reference electrode and a platinum counterelectrode.
The sensors were first left to equilibrate for ca. 30 min in a
buffer solution (10 mmol L™" phosphate+1 mol L™" NaCl+
5 mmol L' CaCl,, pH 7.0). Of note, the presence of
calcium ions is essential for nuclease activity and tests
performed without this ion failed to furnish any evidence of
hydrolysis of the DNA probe (data not shown). Once the
sensor’s signal was stable the desired nuclease concentra-
tion (3 mg mL ') was added to the solution and the
resulting signal decrease was evaluated in real time by
interrogating the electrode at regular intervals. Despite the
different equilibration times for low and high probe-density
sensors, signal suppression was evaluated for a maximum
of 90 min for direct comparison. Unless otherwise specified
the sensors were used a single time and then discarded. For
experiments with ds-DNA probe and TBP the buffer was
implemented with 10 mmol L' MgCl,, because magne-
sium is essential for TBP binding [25].

Results and discussion

As a test bed for our study we employ here E-DNA sensors,
a class of electrochemical device based on the use of
electrode-bound, redox-tagged oligonucleotide probes [9].
The stable and reversible electrochemical signal generated
by the redox label (here methylene blue) conjugated to the
probe, gives a measure of the probe density on the sensor
surface and of the efficiency of redox transfer. Upon
binding of the target to the DNA probe, a signal decrease
is observed because of the reduced efficiency with which
the attached redox tag strikes the electrode and transfers
electrons [9]. We and others have demonstrated the possible
use of this type of sensor for the detection of DNA

L

Buffer
I 0.5 pA

+ Nuclease

04 -03 -02 -01
V vs AglAgCI

between the DNA probe and the enzyme leads to complete loss of the
signal (because the redox tag is removed from the electrode surface),
the residual signal observed after nuclease digestion gives a measure
of the percentage of the probe not accessible to protein binding. The
figure depicts the sensor obtained with the ss-DNA probe (27 base)
and the signals observed before and after (90 min) incubation with
3 mg mL ™ nuclease (density of the sensor shown here is 2.5 (+0.3)x
10'? molecules cm 2)
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Fig. 2 E-DNA sensor modified with a ss-DNA probe (27 bases) gives
a well defined SWV redox peak at the potential expected for
methylene blue (~—0.25 V vs Ag/AgCl). In presence of a saturating
concentration of nuclease (3 mg mL™") this signal is progressively
reduced as nuclease leads to digestion of the probe and subsequent
separation of the redox label from the electrode surface. The signal
can be followed in real time during the reaction. Density of the sensor
shown here is 2.5 (£0.3)x10'? molecules cm 2

complementary sequences, proteins, or antibodies [9]. The
reagentless nature of such devices results in unprecedented
advantages over other techniques and has been demonstrated
to be sensitive, selective, reusable, and suitable for use with
complex samples, for example blood serum [9, 44]. By use of
this technique we evaluated the accessibility of single-
stranded and double-stranded oligonucleotide probes to
interaction with macromolecular targets.

For our studies we used E-DNA sensors comprising
either a 27-base, single-stranded probe (ss-DNA probe) or a

s5-DNA
Probe

Nuclease

G
o

% Signal suppression

31-base, self-complementary hairpin probe (ds-DNA
probe). Both were modified with a 5’ thiol group,
supporting strong chemisorption to the interrogating gold
electrode, and with a methylene blue redox tag at the 3’ end
of the linear probe or pendant on a thymine base along the
10-base double-stranded stem of the hairpin probe. We
interrogated both sensors with a non-specific nuclease
enzyme (deoxyribonuclease I). Hydrolysis of the probe
catalysed by the enzyme results in removal of the
methylene blue label from the electrode surface and a
subsequent decrease of the observed voltammetric signal
(Fig. 1). Because only probes accessible to the nuclease will
be hydrolysed, this test will give a valid measure of the
percentage of probes in the monolayer that are accessible to
this macromolecule.

In the absence of nuclease, the ss-DNA probe produces a
large Faradaic peak at the potential expected for the
methylene blue redox tag (Fig. 2). In the presence of high
concentrations of nuclease (3 mg mL™") this current is
progressively reduced as the DNA probe hydrolyses and
the redox tag dissociates from the electrode surface. We
find, however, that the reaction proceeds only until a
residual current of about 50% of the initial current is
reached after approximately 90 min of reaction (Fig. 2).
This residual current signal remains even after prolonged
incubation in the presence of nuclease (Fig. 2). We believe
that this residual signal is because of the DNA probes that
are inaccessible to the nuclease. Of note, diffusion to the
electrode surface of the redox tags coming from hydrolysed
probes does not produce any significant current signal.

0 20 40 60
Time (min)

Fig. 3 DNA-—protein interaction is strongly dependent on DNA probe
density. We demonstrate this by fabricating E-DNA sensors of
different probe densities by varying the concentration of ss-DNA
probe employed during sensor fabrication and testing these sensors for
90 min in a solution containing a non-specific nuclease enzyme
(3 mg mL™"). At high probe densities only half of the immobilized
probes are accessible to digestion by nuclease. The percentage of
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hydrolysed probes increases monotonically with the decrease of the
probe density until it levels off at ~100% (right) at the lowest probe
density we have investigated (1.1 (£0.1)x10"" molecules cm 2).
Percentage values of signal suppression as a result of nuclease
digestion are the average and standard deviation of measurements
performed with four independent sensors. Signal suppression values
(right) were taken after incubation for 90 min
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Fig. 4 Representative SWVs illustrating the dependence of signal suppression (after nuclease digestion) on probe surface density

To investigate the effect of the probe surface coverage on
this interaction (and, eventually, on this residual signal) we
fabricated sensors with different probe DNA densities. We
controlled probe density by changing the concentration of
the probe DNA used during sensor fabrication [35-37].
Using this approach, we can readily and reproducibly
fabricate E-DNA electrodes with probe densities ranging
from 1.1 (0.1)x10'"" to 2.5 (+£0.3)x10'> molecules cm >
(corresponding to packing of 1.7 (#0.2)x107" to 4.3
(£0.4)x10"% mol cm %) by using probe DNA concen-
trations of 0.01 to 1 umol L™" during fabrication. Attempts
to fabricate sensors with lower probe densities fail to
produce stable, active films, and no electrochemical signal
was detected. The observed probe density increases
monotonically with increasing probe concentration until a
density of 2.5 (£0.3)x 10" molecules cm > is obtained
using a fabrication probe concentration of 1 pmol L
Above this concentration, no further increases in probe

ds-DNA
Probe 80 -
\
=
2 60
[:]
w
g
Nuclease &
€
®
=
2
.& 7]
2 204

density are observed. We find that the highest probe
densities we investigated (2.5%10'? molecules cm ?) pro-
duce the smallest signal suppression in the presence of
nuclease (~50% at our test nuclease concentration) (Figs. 3
and 4). As probe density is reduced, the observed signal
suppression increases before reaching a value of ~100% at
1.1x10" molecules cm 2, the lowest probe density we
used (Figs. 3 and 4). Of note, the signal is completely
suppressed only at the lowest density investigated where
the average distance between the probes is high enough to
enable DNA—protein interaction free from steric constraints.
We also note that, as expected, equilibration time is faster
and we observe plateau signal suppression after 90 min
only at the lower probe densities we have investigated. The
response times of sensors are in fact dependent on probe
density and we observe equilibration time constants ranging
from 5 to 25 min ranging from low to high probe densities

(Fig. 3).

40 60
Time (min)

Fig. 5 Under our conditions the accessibility of double-stranded
DNA probes with protein targets is somewhat more limited than that
of their single-stranded counterparts. In fact, even at the lowest probe
densities investigated (i.e. 0.09x 10" molecules cm™2) only 60% of
final signal suppression is observed, probably suggesting that steric
and electrostatic repulsion between double-stranded probes do not
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allow the formation of a sufficiently well-ordered monolayer.
Percentage values of signal suppression as a result of nuclease
digestion are the average and standard deviation of measurements
performed with four independent sensors. Signal suppression values
(right) were taken after incubation for 90 min
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Table 1 Limited accessibility of ds-DNA probes to macromolecular
targets. The limited accessibility of double-stranded DNA probes to the
binding of macromolecular targets is a common feature of other DNA-
based sensors recently developed for the detection of macromolecular
targets. Here we summarize the results obtained with E-DNA sensors

recently optimized for detection of antibodies, transcription factors, and
other proteins, and highlight that none of these sensors has ever achieved
signal suppression higher than 65%. This, in our opinion, calls for
optimization of ds-DNA monolayer formation to provide better accessi-
bility to macromolecular targets

Target Type of DNA probe Maximum signal suppression (%) Ref.
Endonuclease 1 Self-complementary hairpin probe 60 This work
TATA-box binding protein Self-complementary hairpin probe 65 [25]

M. Hhal Self-complementary hairpin probe 50 [25]
Anti-DNA antibodies ds-DNA (two complementary probes) 50 [26]
Generic antibodies Antigen conjugated scaffold ds-DNA 55 [28, 29]
Thrombin Single stranded G-quadruplex aptamer 40 [21, 34]

When the ds-DNA probe was used a trend similar to that
observed with the single-stranded counterpart was ob-
served. More specifically, higher probe densities enable
only limited interaction with nuclease and result in low
signal-suppression values (20-30%). Lower densities result
in greater signal suppression, although, in this case, even at
the lowest densities tested complete suppression of the
signal was not obtained and we observed a plateau at
approximately 60% (Fig. 5). Of note, in this case a steeper
transition is observed as the probe density changes from 4.1
(£0.4)x10"" to 2.8 (+0.3)x10'"" molecules cm 2. This
behaviour can be explained in terms of accessibility of the
DNA probes to nuclease enzyme. It is likely that ds-DNA
probes, because of their greater steric and electrostatic
repulsion, will form more poorly ordered monolayers than
their single-stranded counterparts. This would result in

No TBP protection

]
Buffer
-ﬁ‘"‘-.

]0.5 pHA

-
b}

Regeneration

partial inaccessibility of some of the surface-confined
probes even at the lowest densities investigated.

It is interesting to note that the plateau suppression
percentage value we have observed in this study (i.e., ca.
60%) with ds-DNA probes compares well with the values
observed in previous studies with E-DNA sensors and
similar DNA probes tested with macromolecular targets.
For example, when ds-DNA probes were used to detect
DNA binding proteins or anti-DNA antibodies in two
different embodiments of the E-DNA sensor, signal
suppression of approximately 60% was observed with all
the targets tested (more precisely, 65% with TBP, 50% with
M. Hhal, and 50% with anti-DNA antibodies) [25, 26]. A
very similar value was also observed with scaffold E-DNA
sensors in which the binding of an antibody to a ds-DNA
probe conjugated with an antigen was tested (average

TBP protection

1 a
Buffer . Regeneration

Io.s HA
2 3
+ TATA binding + Nuclease
protein (TBP)

0.4 03 02 0.1
V vs Ag/AgClI

Fig. 6 Limitation of the accessibility of double-stranded DNA probes
to macromolecular targets is not only limited to nuclease digestion.
Here we demonstrate this by using a ds-DNA probe which is
specifically recognized by a DNA binding protein (i.e. TATA-box
binding protein, TBP). Left. In the absence of TBP, upon the addition
of nuclease we observe a maximum signal suppression of approxi-
mately 60%. Because the probe is hydrolysed the signal cannot be
restored (here regeneration is performed with a wash in 8 mol L'
guanidinium chloride). Right. When the probe is first incubated with
TBP we observe signal suppression comparable with that previously
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obtained with nuclease. However, in this case, injection of nuclease on
to this sensor does not lead to any further signal decrease, because the
TBP-bound probe is protected against digestion. Because the signal
suppression observed is due to reversible binding of TBP only, a
simple wash with 8 mol L' guanidinium chloride is sufficient to
restore the initial signal and regenerate the sensor. This experiment
demonstrates that a significant portion of ds-DNA probes is not
accessible to protein interaction and is responsible for the residual
current signal observed after the binding of the macromolecular target



Probe accessibility effects on the performance of electrochemical

419

suppression signals, 50%) [28, 29]. Also, the 60%
maximum signal suppression observed is somewhat similar
to the value obtained using the thrombin aptamer, a single-
stranded DNA probe capable of forming a well-ordered
secondary structure which is comparable in size and steric
hindrance with a ds-DNA probe (Table 1) [21, 34]. In our
opinion this suggests that in these previous examples
binding of the macromolecular targets to their recognition
DNA sequences completely suppresses the signal of the
redox label conjugated to the bound DNA probes. The
residual current can then be ascribed to DNA probes that
are not accessible to their targets and that, even at a
saturating concentration of the macromolecular target, give
a non-trivial redox signal. To further support this hypothesis
we have tested a ds-DNA probe which contains the cognate
sequence recognized by a DNA binding protein (i.e. TATA-
box binding protein, TBP) and have challenged it with its
DNA binding protein target (i.e. TBP). As expected [25],
the maximum signal change we observed under this
condition plateaus at ca. 60% of the initial current signal
(Fig. 6, right). Addition of nuclease to this solution does not
lead to any further decrease of current signal, suggesting
that the TBP binds to all the accessible probes on the
electrode surface and that the residual current is due to
unbound/inaccessible probes. In fact, it is well known that
the binding of TBP and, more generally, of transcription
factors to their cognate sequences results in protection from
nuclease action. The fact that no decrease in current is
observed after nuclease injection suggests the presence in
the monolayers of a non trivial percentage of probes which
is not accessible to protein interaction. Successful regener-
ation of the sensor by washing with 8 mol L™' guanidinium
chloride is an additional demonstration of this (Fig. 6,
right). In fact, while the probes hydrolysed by nuclease
cannot be regenerated (Fig. 6, left), it was demonstrated that
TBP bound probes can be easily brought back to their
unbound configuration by a simple distilled water wash
[25].

Because most DNA-binding proteins target specific
double stranded DNA sequences and because scaffold
DNA-based approaches are achieved by hybridization of
an anchoring and a recognition DNA strand, most DNA-
based sensors (either based on electrochemistry or other
surface analysis techniques) developed for detection of non-
DNA targets make use of double-stranded DNA probes.
For this reason, knowledge of the extent to which probe
density affects the DNA—protein interaction would provide
a general tool for optimization of other similar sensing
devices [25, 26, 28]. We note here that several reports have
previously demonstrated the effect of probe density on the
hybridization efficiency and sensitivity of DNA sequence
detection. However, there are very few reports dealing with
the investigation of DNA-protein interaction on surfaces

[34, 45-49]. Because the use of DNA monolayers for
detection of macromolecules has recently been investigated
by many research groups we believe this report could be of
value in this perspective. The results we present in this
work suggest, in fact, that the accessibility issue is crucial
and should be carefully taken in consideration when DNA-
based sensors are used for the detection of macromolecular
targets. It should also be noted that, for analytical
applications, it would be preferable to have a slightly
higher density which could produce better defined and
more reproducible current peak signals. For this reason, we
believe it would be advisable to use probe packing densities
between 0.5x10'" and 2x10'"" molecules cm * by using
probe concentrations between 10 and 50 nmol L™ during
fabrication.

It is also important to note that, while the results reported
here were obtained with sensors fabricated with gold rod
macroelectrodes where DNA—thiol mixed monolayers were
produced by simple adsorption, it is likely that the use of
gold microelectrodes, nanobeads, or ultraflat surfaces and
the adoption of more accurate and precise techniques for
SAMs preparation and density control (for example, nano-
grafting [4, 46]) could lead to better accessibility of DNA
probes to protein interaction. Moreover, in our opinion, the
effect of the coadsorbate (in this work mercaptohexanol)
could be an important determinant in this perspective and
should be carefully taken into consideration to improve the
accessibility of DNA monolayers to protein interaction
[50]. These issues are currently under evaluation in our
laboratory.
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