# Conformational Effects on the Electron-Transfer Efficiency in Peptide Foldamers Based on $\alpha, \alpha$ -Disubstituted Glycyl Residues

by Emanuela Gatto<sup>a</sup>), Alessandro Porchetta<sup>a</sup>), Lorenzo Stella<sup>a</sup>), Ivan Guryanov<sup>b</sup>), Fernando Formaggio<sup>b</sup>), Claudio Toniolo<sup>b</sup>), Bernard Kaptein<sup>c</sup>), Quirinus B. Broxterman<sup>c</sup>), and Mariano Venanzi<sup>\*a</sup>)

<sup>a</sup>) Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', I-00133 Rome (e-mail: venanzi@uniroma2.it)

<sup>b</sup>) Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova

<sup>c</sup>) DSM Pharmaceutical Products, Advanced Synthesis, Catalysis and Development,

NL-MD 6160 Geleen

Peptide foldamers based on  $\alpha,\alpha$ -disubstituted glycyl residues were synthesized and chemically characterized to investigate the effects of the electric field generated by a  $3_{10}$ -helix on the rate of intramolecular photoinduced electron-transfer reactions. To this end, two new octapeptides having identical sequences were suitably side-chain functionalized with the same electron-transfer donor-acceptor pair, but inverting the position of the pair along the main chain. The electron-transfer rate constants, measured by time-resolved spectroscopy techniques (nanosecond transient absorption and time-resolved fluorescence), indicated that, in the case of the  $3_{10}$ -helix, the electrostatic effect is significant, but smaller than that obtained for  $\alpha$ -helical peptides. This finding can be likely ascribed to the distortion of the H-bond network with respect to the helical axis taking place in the former secondary structure. Overall, these results could have implications on electron-transfer phenomena in model and biomembranes facilitated by peptaibiotics.

**Introduction.** – In 1966, the isolation from fungal sources of peptides containing Aib (*Fig. 1*), later called peptaibiotics, started an active research effort devoted to the characterization of the bioactivity properties of these molecules, such as their antibiotic action and membrane-perturbing activity [1][2]. However, another fundamental research field initiated by this discovery is concerned with the stereochemical consequences of introducing a,a-disubstituted glycyl residues (such as Aib or (aMe)Nva; *Fig. 1*) into peptide chains. Over the last 30 years, the research efforts of several groups employing many different experimental and theoretical methods have clearly established their strong helix-forming properties. In particular, a high content of Aib residues in a short peptide chain favors the  $3_{10}$ -helix [3], *i.e.*, a regular conformation with approximately three residues per turn and an  $i \leftarrow i+3$  intramolecular H-bonding pattern, while longer Aib-containing peptides attain the a-helical conformation (3.6 residues per turn and  $i \leftarrow i+4$  H-bonds) [4–10]. L-( $\alpha$ Me)Nva, a chiral a,a-disubstituted glycine, shows a pronounced bias toward the right-handed  $3_{10}$ -helix [8].

As a consequence, peptides comprising  $\alpha, \alpha$ -disubstituted glycyl residues are currently used as rigid scaffolds for the specific positioning of electro- or photochemical

<sup>© 2008</sup> Verlag Helvetica Chimica Acta AG, Zürich



Fig. 1. Molecular formulae of the  $\alpha, \alpha$ -disubstituted glycines Api, Aib, and  $(\alpha Me)Nva$ 

moieties at a well-defined distance [11]. In particular, our group has extensively employed these systems in studies of photoinduced electron or energy transfer [12]. In the present study, we took advantage of Aib- and ( $\alpha$ Me)Nva-based oligopeptide  $3_{10}$ helices to assess the role of the electrical dipole generated by a helical peptide chain in modulating electron-transfer processes, an issue already addressed by *Galoppini* and *Fox* [13][14] for  $\alpha$ -helical peptides. A comparison between the different influences of  $\alpha$ - and  $3_{10}$ -helices on the efficiency of photoinduced electron-transfer processes has allowed an evaluation of the role of peptide conformation and H-bonding pattern in these phenomena.

The dipole of a peptide bond is *ca.* 3.5 D. In the  $\alpha$ -helix, these dipoles are aligned along the helix axis, producing an effective positive charge at the N-end and an effective negative charge at the C-end [13][14]. Polarization effects due to H-bonding increase the dipole moment per residue to 5.2 D [15]. This strong electric field plays an important role in the structure and function of proteins. In contrast, in a  $3_{10}$ -helix the H-bonds are not perfectly aligned with respect to the helical axis, and hence the resulting total molecular dipole is smaller than in the  $\alpha$ -helix (4.6 D per residue) [15][16]. Furthermore, the different H-bonding patterns in the two helical conformations could influence the electronic coupling between donor and acceptor moieties linked to the peptide chain [15].

To analyze the effect of the electric field generated by a  $\mathcal{J}_{10}$ -helix on intramolecular electron-transfer processes, three terminally blocked octapeptides were synthesized, comprising Aib, (aMe)Nva, and Api, the last a,a-disubstituted glycine being characterized by a  $C(a)_i - C(a)_i$  cyclization (*Fig. 1*) [17][18].

The primary structures of the peptides investigated are as follows:

- **P2**: Z-Aib-Api(Pyr)-L-(αMe)Nva-Aib-L-(αMe)Nva-(αMe)Nva-Aib-Api-(Boc)-NH'Bu
- **P2A8**: Z-Aib-Api(Pyr)-L-(αMe)Nva-Aib-L-(αMe)Nva-(αMe)Nva-Aib-Api-(Azu)-NH'Bu
- **A2P8**: Z-Aib-Api(Azu)-L-(αMe)Nva-Aib-L-(αMe)Nva-(αMe)Nva-Aib-Api-(Pyr)-NH'Bu

(for the formulae of Api(Azu) and Api(Pyr), see *Fig. 2*). The notations **P2**, **P2A8**, and **A2P8** emphasize the different positions of the chromophoric moieties along the main chain.

The oligopeptides **P2A8** and **A2P8**, having pendant electron donor (D; pyrene) and acceptor (A; azulene) chromophores, differ only in the relative positions of the donor – acceptor (D-A) pair along the helix dipole [13][14]. Thus, the photoinduced electron-



Fig. 2. Molecular formulae of the Api(Azu) and the Api(Pyr) residues

transfer process between D and A should be affected by the orientation of the electric field determined by the helix dipole. Steady-state and time-resolved fluorescence experiments, together with laser-induced spectroscopy on transient species, were performed to investigate this phenomenon.

**Results.** – *Peptide Synthesis and Characterization.* For the large-scale production of the enantiomerically pure L- $(\alpha Me)Nva$ , we exploited an economically attractive and generally applicable chemo-enzymatic synthesis developed by *DSM Pharmaceutical Products* a few years ago [19].

For the preparation of the terminally blocked octapeptide **P2**, we used the segmentcondensation approach in solution (*Scheme 1*). Tripeptide **3A**-OH was coupled to the *N*-deprotected tripeptide **3B**, and the resulting N-terminal hexapeptide **6AB**, after *C*deprotection, was reacted with the  $N^{\alpha}$ -deprotected dipeptide **2C** (*tert*-butyl)amide to generate the octapeptide **8ABC** (**P2**). The amino acid derivative Z-Api(Pyr)-OH was

Scheme 1. Segment-Condensation Approach Used for the Synthesis of the Terminally Blocked Octapeptide **P2** 



1265

prepared from Z-Api(Boc)-OH [20], which was *C*-protected as Z-Api(Boc)-OBg upon treatment with BrBg [21]. Then, the side-chain Boc group was removed, and the Pyr group was incorporated by use of Pyr-COOH, affording Z-Api(Pyr)-OBg. Finally, OBg *C*-deprotection by alkaline hydrolysis gave Z-Api(Pyr)-OH, which was exploited for the synthesis of dipeptide **2A**. Z-Aib-OH [22] and Z-L-( $\alpha$ Me)Nva-OH [23] are known products. All amide (or peptide) bond formations were achieved using 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC; in a few cases, in the presence of the efficient additive 7-aza-1-hydroxy-1,2,3-triazole (HOAt) [24]) in CH<sub>2</sub>Cl<sub>2</sub> solution. Removals of the 'BuO ester and Boc urethane functions were accomplished by mild acidolyses with a 1:1 CH<sub>2</sub>Cl<sub>2</sub>/TFA mixture. The Z N<sup>*a*</sup>-protection was removed by catalytic hydrogenation in MeOH solution.

The octapeptide **P2A8** ( $\equiv$ 8'ABC) was prepared by deprotecting under acidic conditions the side chain of Api(Boc) in the octapeptide **P2** ( $\equiv$ 8ABC) and coupling the resulting compound with Azu-COOH/EDC/HOAt.

Since, in our experience with the model dipeptide Z-Api(Azu)-L-( $\alpha$ Me)Nva-O'Bu, the Azu group does not survive a catalytic hydrogenolysis treatment, we partly modified *Scheme 1* for the synthesis of octapeptide **A2P8** (*Scheme 2*). We first prepared the C-terminal pentapeptide **5B''C''** by condensing the tripeptide segment **3B''**-OH with the *N*-deprotected dipeptide **2C''**. The octapeptide **8''** was synthesized

Scheme 2. Partial Segment-Condensation Approach Used for the Synthesis of the Terminally Blocked Octapeptide A2P8



from **5B**"C" by three successive steps using Z-L-( $\alpha$ Me)Nva-OH, Z-Api(Boc)-OH, and Z-Aib-OH. In the last step, the side chain of Api(Boc) in the octapeptide **8**" was deprotected, and the resulting octapeptide was reacted with Azu-COOH/EDC/HOAt to afford the desired octapeptide **A2P8**.

The various peptides and their synthetic intermediates were characterized by melting-point determination, optical rotatory power, TLC in three different eluant systems, and solid-state IR absorption (*Table 1*). All amino acid derivatives and peptides were also checked by <sup>1</sup>H-NMR and the longest peptides by ESI-TOF mass spectrometry as well (results not shown).

*UV Absorption. Fig. 3* shows the UV absorption spectra of the peptides **P2A8** and **A2P8**, and the reference compounds, containing only the pyrene (peptide **P2**) or the azulene [Z-Api(Azu)-OH] chromophore.



Fig. 3. Absorption spectra of P2 (solid line) and Z-Api(Azu)-OH (dashed line) (left), and of P2A8 (dotted line) and A2P8 (solid line) (right) in MeCN solution

The spectra of the peptides **P2A8** and **A2P8**, very similar to each other, exhibit a combination of the same absorption bands of the pyrenyl [25] and azulenyl [26–28] components, indicating the absence of any strong ground-state interaction between D and A in both peptides.

*Peptide Conformation. CD and IR Absorption.* To determine the conformational preferences of the peptides investigated, we have performed CD and IR absorption experiments. The CD spectra of **P2**, **P2A8**, and **A2P8** in MeCN solution, shown in *Fig. 4*, exhibit an intense negative maximum around 202-205 nm, typical of peptides attaining a right-handed 3<sub>10</sub>-helical conformation [29][30]. In the 230-250-nm range some differences among the three peptides can be noted, probably due to an induced CD resulting from electronic transitions of the aromatic side chains (pyrene and azulene), caused by the nearest-neighbor peptide groups [31][32].

The IR absorption spectra in  $CDCl_3$  solution of the peptides **P2** and **P2A8**, and their synthetic precursors Z-Aib-Api(Pyr)-L-( $\alpha$ Me)Nva-O'Bu and Z-Aib-Api(Pyr)-L-( $\alpha$ Me)Nva-Aib-L-( $\alpha$ Me)Nva-L-( $\alpha$ Me)Nva-O'Bu are shown in *Fig.* 5. In the N–H stretching region, two characteristic bands were observed at *ca.* 3430 and 3330 cm<sup>-1</sup>.

| M.p. [°]                                                                                                                                                                                                                                                                  | Crystallization solvent <sup>b</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[\alpha]_{\mathrm{D}}^{20}$ °)                           | LC R              | values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (p                                                                                                                                                                                                                                                                                                                                                                                                                                        | IR Absorption [cm <sup>-1</sup> ] <sup>e</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | Ι                 | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | III                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 156-158                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.80              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3433, 3316, 1753, 1693, 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 136 - 138                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3423, 1743, 1705, 1648, 1538                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 227-229                                                                                                                                                                                                                                                                   | MeOH/Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                         | 0.20              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3407, 1741, 1687, 1531                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 143-145                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.70              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3426, 1717, 1694, 1651, 1535                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 150 - 152                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.6                                                      | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3430, 3392, 3315, 1726, 1668, 1630, 1525                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 233-235                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.4                                                      | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3402, 3352, 1716, 1678, 1618, 1510                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 151-153                                                                                                                                                                                                                                                                   | MeOH/Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                       | 0.15              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3411, 1705, 1678, 1618, 1511                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oil                                                                                                                                                                                                                                                                       | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-4.1^{\rm f}$                                            | 0.95              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3418, 3361, 1719                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 71-73                                                                                                                                                                                                                                                                     | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.9                                                      | 0.95              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3391, 3332, 1726, 1669                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 109 - 111                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.0                                                      | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3439, 3339, 1737, 1708, 1648, 1535                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 194 - 196                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3393, 3302, 1719, 1693, 1674, 1531                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 159 - 161                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11.9                                                     | 0.80              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3420, 3333, 1727, 1701, 1665, 1528                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 212-214                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-1.2^{\rm g}$                                            | 0.55              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3426, 3319, 1660, 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 210-212                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-15.8^{f}$ )                                             | 0.50              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3426, 3321, 1661, 1532                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 195-197                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.60              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3425, 3390, 3314, 1723, 1650, 1627, 1527                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 211-213                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3416, 3388, 3304, 1710, 1670, 1625, 1530                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139 - 141                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9.4                                                      | 0.80              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3425, 3326, 1704, 1664, 1617, 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 145 - 147                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -17.9                                                     | 0.80              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3319, 1661, 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 155-157                                                                                                                                                                                                                                                                   | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.6                                                       | 0.80              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3314, 1659, 1533                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 160 - 161                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                       | 0.60              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3305, 1657, 1532                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 163 - 165                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-24.5^{h}$ )                                             | 0.55              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3307, 1657, 1531                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 164 - 166                                                                                                                                                                                                                                                                 | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                         | 0.65              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3420, 1749, 1675, 1533                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 105 - 107                                                                                                                                                                                                                                                                 | MeOH/Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                         | 0.15              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3405, 3336, 1721, 1533                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 78-80                                                                                                                                                                                                                                                                     | AcOEt/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | –8.7 <sup>f</sup> )                                       | 0.95              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3396, 3306, 1725, 1672, 1539                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n ether. <sup>c</sup><br>egions ar                                                                                                                                                                                                                                        | c = 0.5, MeOH. <sup>d</sup> ) For e<br>e reported. <sup>f</sup> ) $[a]_{436}^{20}, c = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | luants, see<br>.3, MeOH.                                  | Exper. $g(c) = 0$ | <i>Part.</i> <sup>e</sup><br>).3, Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) For tl<br>OH. <sup>h</sup> )                                                                                                                                                                                                                                                                                                                                                                                                            | he solid-state IR absorption spectra only $[\alpha]_{36}^{20}$ , $c=0.2$ , MeOH.                                                                                                                                                                                                                                                                                                                                                                                                   |
| 136–138<br>137–138<br>151–152<br>151–152<br>151–153<br>151–153<br>109–111<br>194–196<br>159–161<br>194–197<br>212–214<br>212–214<br>195–197<br>212–214<br>1145–147<br>115–107<br>163–165<br>163–165<br>163–166<br>165–107<br>78–80<br>n ether. <sup>°</sup><br>egions art | AcOEt/PE<br>MeOH/Et <sub>2</sub> O<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOEt/PE<br>AcOET/PE<br>AcOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE<br>ACOET/PE | $\begin{array}{c} & - & - & - & - & - & - & - & - & - & $ |                   | $\begin{array}{c} 0.65\\ 0.70\\ 0.70\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.66\\ 0.80\\ 0.55\\ 0.55\\ 0.56\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\$ | 0.65 $0.95$ $0.70$ $0.95$ $0.70$ $0.95$ $0.65$ $0.95$ $0.65$ $0.95$ $0.15$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.66$ $0.95$ $0.65$ $0.95$ $0.65$ $0.95$ $0.66$ $0.95$ $0.66$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.60$ $0.95$ $0.65$ $0.95$ $0.65$ $0.95$ $0.155$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ | 0.05 $0.95$ $0.00$ $0.70$ $0.95$ $0.45$ $0.65$ $0.95$ $0.45$ $0.65$ $0.95$ $0.45$ $0.65$ $0.95$ $0.45$ $0.65$ $0.95$ $0.30$ $0.15$ $0.95$ $0.36$ $0.95$ $0.95$ $0.30$ $0.95$ $0.95$ $0.30$ $0.65$ $0.95$ $0.30$ $0.65$ $0.95$ $0.30$ $0.55$ $0.95$ $0.30$ $0.55$ $0.95$ $0.30$ $0.55$ $0.95$ $0.30$ $0.55$ $0.95$ $0.30$ $0.55$ $0.95$ $0.30$ $0.66$ $0.95$ $0.30$ $0.80$ $0.95$ $0.35$ $0.80$ $0.95$ $0.35$ $0.65$ $0.95$ $0.35$ $0.65$ $0.95$ $0.35$ $0.65$ $0.95$ $0.10$ $0.95$ |

Table 1. Physical Data and Analytical Properties of the Newly Synthesized Compounds

1268

# CHEMISTRY & BIODIVERSITY - Vol. 5 (2008)



Fig. 4. *Far-UV-CD spectra of the* **P2** (solid line), **P2A8** (dotted line), *and* **A2P8** (dashed line) *in MeCN* solution. Peptide concentration:  $1 \times 10^{-4}$  M.

The first band is associated with NH groups not involved in H-bond interactions, while the second band is typical of H-bonded NH groups [33][34]. The relative area of the latter transition increases with the length of the backbone, thereby denoting a greater number of residues participating in the H-bond network, while the former transition shows no intensity change with peptide chain elongation [35][36]. This finding suggests that only the N-terminal NH groups are not involved in intramolecular H-bonds, as expected for a peptide helical structure. No significant changes were observed in the IR absorption spectra when varying the peptide concentration between  $10^{-4}$  and  $10^{-2}$  M (spectra not shown), ruling out self-association *via* intermolecular H-bonds.



Fig. 5. IR Absorption spectra of the Z-Aib-Api(Pyr)-L- $(\alpha Me)Nva-O^{t}Bu$  (3), Z-Aib-Api(Pyr)-L- $(\alpha Me)Nva-Aib$ -L- $(\alpha Me)Nva-O^{t}Bu$  (6), P2, and P2A8 in CDCl<sub>3</sub> solution in the 3500-3200-cm<sup>-1</sup> region. Peptide concentration:  $1 \times 10^{-3}$  M.

The present IR absorption results support the conclusion that intramolecularly Hbonded structures are largely populated by these octapeptides in solution and, combined with the CD data, suggest that the compounds investigated are folded in right-handed  $3_{10}$ -helical conformations.

Steady-State and Time-Resolved Fluorescence. We next examined the excited-state behavior of the pyrene-azulene octapeptides. Steady-state fluorescence experiments in MeCN solution show a substantial quenching of the pyrene emission by azulene for both A2P8 and P2A8, as illustrated in *Fig.* 6 ( $\lambda_{ex}$  341 nm). The fluorescence quantum yields ( $\phi$ ) are given in *Table 2*. Interestingly, the quantum yield of P2A8 is greater than that of A2P8, indicating a more efficient quenching in the latter peptide. It should be noted that the azulene emission is negligible, and the fluorescence quantum yield of the pyrenyl peptide P2 ( $\phi = 0.063$ ) is by one order of magnitude lower than that of pyrene ( $\phi = 0.72$ ) [37], probably because of the carbonyl derivatization.



Fig. 6. Steady-state fluorescence spectra of **P2** (solid line), **P2A8** (dotted line), and **A2P8** (dashed line) in MeCN solution ( $\lambda_{ex}$  341 nm)

Table 2. Quantum Yields ( $\phi$ ), Average Lifetimes ( $\langle \tau \rangle$ ), and Dynamic Quenching Rate Constants ( $k_q$ ) of the Pyrene-Azulene Octapeptides in MeCN Solution<sup>a</sup>)

| Peptide                                | $\phi$ | $\langle 	au  angle$ | $k_{ m q}  [10^{-8}  { m s}^{-1}]$ |
|----------------------------------------|--------|----------------------|------------------------------------|
| P2                                     | 0.063  | 11.7                 |                                    |
| P2A8                                   | 0.022  | 6.4                  | 0.7                                |
| A2P8                                   | 0.017  | 4.8                  | 1.2                                |
| <sup>a</sup> ) λ <sub>ex</sub> 341 nm. |        |                      |                                    |

Time-resolved fluorescence experiments are reported in *Fig.* 7. All time decays can be reproduced by a multiexponential fitting function (*Table 3*), suggesting the existence of several ground-state conformers. In agreement with the steady-state

1271

results, the average fluorescence lifetime  $\langle \tau \rangle$  of the peptide **P2** (11.7 ns; *Table 2*) is much shorter than that of the pyrene molecule in solution (200 ns), and both **A2P8** and **P2A8** are significantly quenched with respect to the reference compound **P2**. This quenching can be explained in terms of intramolecular photoinduced electron transfer, but resonance-energy transfer is very likely taking place as well, since the absorption spectrum of the azulene chromophore partially overlaps with the emission spectrum of the pyrene moiety [38].



Fig. 7. Fluorescence decay curves of P2, P2A8, and A2P8 ( $\lambda_{ex}$  341,  $\lambda_{em}$  410 nm). The lamp profile is also shown.

 Table 3. Time Decay Parameters of Excited Pyrene in the Pyrene-Azulene Octapeptides in MeCN and DMSO Solutions<sup>a</sup>)

| Solvent | Peptide | $a_1$ | $\tau_1$ [ns] | $\alpha_2$ | $\tau_2 [ns]$ | $\alpha_3$ | $\tau_3$ [ns] | $\chi^2$ |
|---------|---------|-------|---------------|------------|---------------|------------|---------------|----------|
| MeCN    | P2      | 0.14  | 1.2           | 0.37       | 9.4           | 0.49       | 16.4          | 1.10     |
|         | P2A8    | 0.32  | 1.3           | 0.34       | 5.5           | 0.34       | 12.2          | 1.00     |
|         | A2P8    | 0.4   | 2.3           | 0.59       | 6.6           |            |               | 1.03     |
| DMSO    | P2      | 0.34  | 2.7           | 0.65       | 5.9           | 0.01       | 22.4          | 1.07     |
|         | P2A8    | 0.33  | 1.2           | 0.56       | 4.3           | 0.11       | 7.6           | 1.07     |
|         | A2P8    | 0.31  | 1.3           | 0.66       | 3.8           | 0.02       | 7.8           | 1.00     |

<sup>a</sup>)  $\lambda_{ex}$  341 nm,  $\lambda_{em}$  410 nm. The uncertainty in lifetimes is *ca*. 5% for the long components and *ca*. 10% for the short components. The uncertainty in the pre-exponents is *ca*. 10%.

The total quenching rate constants (*Table 2*) were calculated from the average lifetimes of the pyrenyl group in the peptides  $(\langle \tau \rangle)$  and in the reference compound **P2**  $(\langle \tau_0 \rangle)$ , as given by:

$$\langle k_{\mathrm{ET}} 
angle = rac{1}{\langle au 
angle} - rac{1}{\langle au_0 
angle}$$

In agreement with the steady-state results, the quenching rate constant of **A2P8** is greater than that of **P2A8**.

## CHEMISTRY & BIODIVERSITY - Vol. 5 (2008)

Peptide destructuration would provide a useful test for the influence of the helical dipole on the measured decay rates, as the net dipole of a fully unordered peptide is zero [12]. Generally, DMSO is used as a structure-disrupting solvent, since the sulfoxide group promotes the formation of  $S=O\cdots H-N$  intermolecular H-bonding, competing effectively with the intramolecular  $C=O\cdots H-N$  H-bonds present in the helix [39]. For this reason, time-resolved fluorescence experiments were also performed in DMSO. Also in this case, time decays are described by multiexponential functions, as reported in *Table 3*. Average lifetimes and quenching rate constants are listed in *Table 4:* no significant differences are observed in the quenching rates with respect to those obtained in MeCN solution, suggesting that DMSO is not able to unfold the extremely stable  $3_{10}$ -helix based on eight constituent  $\alpha, \alpha$ -disubstituted glycyl residues. Unfortunately, CD experiments to confirm this conclusion cannot be performed in this latter solvent, because of its strong absorption in the peptide spectral region (195–250 nm).

Table 4. Average Lifetimes  $(\langle \tau \rangle)$  and Dynamic Quenching Rate Constants  $(k_q)$  of the Pyrene-Azulene Octapeptides in DMSO Solution<sup>a</sup>)

| Peptide | $\langle \tau \rangle$ | $k_{ m q}~(	imes 10^{-8})~[{ m s}^{-1}]$ |
|---------|------------------------|------------------------------------------|
| P2      | 5.0                    |                                          |
| P2A8    | 3.6                    | 0.8                                      |
| A2P8    | 3.1                    | 1.2                                      |

*Transient Absorption*. Transient-absorption experiments with nanosecond resolution were carried out to further characterize the electron-transfer process between the azulene and pyrene groups in the excited state, and to determine the charge recombination rate constants for the back-electron-transfer reactions.

All transient absorption decays could be described satisfactorily with a double exponential decay. The two components could be assigned to the pyrene radical cation and pyrene triplet-triplet absorptions, based on the corresponding decay-associated spectra (*Fig. 8*), which exhibit the absorption maxima typical of these species (450 and 420 nm, resp.) [40-44]. This spectral assignment was further confirmed by experiments performed in the presence of oxygen (data not shown), which suggested a much lower triplet-triplet contribution, due to efficient quenching of this species. The presence of signals of radical species also in the octapeptide P2, which lacks the electron acceptor azulene, indicates the occurrence of an electron-transfer process from pyrene to the peptide backbone, as previously reported [45-49]. Transient absorption measurements in the same wavelength region on the simple derivative Z-Api(Azu)-OH did not reveal any specific feature, probably because of the very small singlet to triplet intersystemcrossing efficiency in the azulene chromophore [50][51]. Furthermore, no absorption features ascribable to the pyrene radical anion ( $\lambda_{max}$  490 nm [42][43][52]) were observed, a finding that rules out an electron-transfer process from azulene to pyrene. The rate constants associated to the triplet state and the cation radical decay, and the relative transient absorptions derived from the global analysis of the time-dependent

1272

spectra, are reported in *Table 5*. These data conclusively confirm the presence of an effect of the electrical field induced by the peptide helix dipole on the back-electron-transfer process, since the rate of radical cation decay is 1.5 times higher in **P2A8** than in **A2P8**.



Fig. 8. Transient absorption experiments for the reference peptide **P2**. Left: decay curves at two representative wavelengths. Curves resulting from the global double exponential fit are shown as solid lines. *Right:* transient absorption decay associated spectra (at t=0), derived from the global fit. *Solid line:* radical cation; *dotted line:* triplet state. All transient absorption values are normalized by sample absorbance at the laser excitation wavelength (355 nm).

 

 Table 5. Decay Parameters from a Global Analysis of Transient Absorption Experiments on the Pyrene-Azulene Octapeptides in MeCN Solution

| Peptide    | $\Delta A_{\rm tot}/A^{\rm a})$ | $k_{ m T}^{ m b})$<br>(×10 <sup>-4</sup> ) [s <sup>-1</sup> ] | $\Delta A_{\rm T}/A^{\rm c}$ ) | $a_{\rm T}{}^{\rm d}$ ) | $k_{c}^{e}$ )<br>(×10 <sup>-5</sup> ) [s <sup>-1</sup> ]    | $\Delta A_{\rm C}/A^{\rm f})$ | $\alpha_{\rm C}^{\rm g}$ |
|------------|---------------------------------|---------------------------------------------------------------|--------------------------------|-------------------------|-------------------------------------------------------------|-------------------------------|--------------------------|
| P2<br>P2A8 | 0.289<br>0.095                  | $0.6 \pm 0.1$<br>2.7 ± 0.2                                    | 0.098<br>0.021                 | 0.34<br>0.26            | $\begin{array}{c} 1.82 \pm 0.05 \\ 6.9 \pm 0.2 \end{array}$ | 0.191<br>0.059                | 0.66<br>0.74             |
| A2P8       | 0.100                           | $4.9\pm0.5$                                                   | 0.026                          | 0.26                    | $5.0\pm0.2$                                                 | 0.074                         | 0.74                     |

<sup>a</sup>) Total differential absorption at t=0,  $\lambda$  450 nm, normalized for the absorption of the pyrene chromophore at 355 nm. <sup>b</sup>) Triplet decay rate constant. <sup>c</sup>) Differential triplet absorption at t=0,  $\lambda$  450 nm, normalized for the absorption of the pyrene chromophore at 355 nm. <sup>d</sup>) Fractional contribution of the triplet state to the transient absorption intensity at 450 nm. <sup>e</sup>) Rate constant of the radical cation decay. <sup>f</sup>) Differential radical cation absorption at t=0,  $\lambda=450$  nm, normalized for the absorption of the pyrene chromophore at 355 nm. <sup>g</sup>) Fractional contribution of the radical cation to the transient absorption of the radical cation to the transient absorption intensity at 450 nm.

**Discussion.** – This study analyzes the effects of the electrostatic field generated by a  $3_{10}$ -helical peptide on the rate of intramolecular photoinduced electron-transfer processes, and how these compare to the effects generated by  $\alpha$ -helical peptides [13][14].

The influence of an electrostatic field on electron-transfer rates can be illustrated in terms of the simple semiclassical *Marcus* theory [53][54]. The rate constant of electron transfer ( $k_{\rm ET}$ ) from a donor to an acceptor at a fixed distance is described by the following equation:

$$k_{\rm ET} = \sqrt{\frac{4\pi^3}{h^2\lambda k_{\rm B}T}} H_{\rm DA}^2 \exp\left[-\frac{\left(\Delta G^0 + \lambda\right)^2}{4\lambda k_{\rm B}T}\right]$$
$$H_{\rm DA}^2 = \left(H_{\rm DA}^0\right)^2 \exp\left(-\beta r\right)$$

where h is Planck's constant,  $\lambda$  the reorganization energy,  $k_{\rm B}$  the Boltzmann's constant, T the absolute temperature,  $H_{\rm DA}^2$  the electronic coupling strength between donor and acceptor,  $(H_{\rm DA}^0)^2$  the coupling strength at the closest contact,  $\Delta G^0$  the driving force for the electron-transfer reaction,  $\beta$  the tunneling parameter for the medium, and r the edge-to-edge donor-acceptor distance. Any energy effects due to electrostatic interactions between the helical field and the photogenerated D<sup>++</sup>A<sup>+-</sup> couple are included in the  $\Delta G^0$  term. Therefore, the electron-transfer rate must depend on the positioning of D and A with respect to the peptide helical dipole. The alignment of the electron-transfer charge-recombination process should be relatively favored in **P2A8**. In principle, the different peptide conformations could influence also the coupling between donor and acceptor, and, therefore, the tunneling parameter  $\beta$ . However, quantum-chemical calculations suggest that this parameter is comparable in the  $3_{10}$ - and  $\alpha$ -helices [15].

Fluorescence quenching experiments did show different decay rates for the excited pyrene in the two peptides A2P8 and P2A8 (with a ratio of *ca.* 1.7). However, a simple interpretation in terms of electron transfer is not warranted, since different observations indicate that resonance energy-transfer processes from pyrene to azulene cannot be neglected. The Förster radius  $R_0$  for pyrene and azulene, i.e., the characteristic distance at which the energy-transfer efficiency is 50%, can be calculated from the emission and absorption spectra of the two fluorophores [38]. The obtained  $R_0$  value of 14.1 Å is larger than the approximate distance of 12 Å between the two moleties, calculated by assuming a translational distance per residue of 2 Å typical of the  $\beta_{10}$ -helix [3], and considering that the D and A chromophores are separated by six residues in the octapeptides investigated. A direct indication that energy-transfer processes are indeed taking place is provided by the transient absorption experiments. If electron transfer to azulene is the main quenching mechanism of the pyrene excited singlet state, a higher population of the radical cation species would be expected in the peptides A2P8 and P2A8 with respect to the reference octapeptide P2. In contrast, these peptides exhibited a *reduced* transient absorption (*Table 5*), both for the radical cation and the triplet state, indicating an efficient quenching of the pyrene excited singlet state by a process different from electron transfer.

A better insight in the electron-transfer process can be derived from the transient absorption experiments. The overall transient absorptions of **A2P8** and **P2A8** are

reduced with respect to that of **P2**, because of the more efficient quenching of the pyrene excited singlet state. However, the fraction of the observed signal associated to the radical cation is slightly higher in these peptides than in the reference compound **P2**, showing that a photoinduced electron-transfer process is indeed taking place. The time resolution of our transient absorption setup is limited to processes slower than *ca*. 10 ns by the width of the pump laser pulse. Therefore, our data do not allow a direct observation of the population of the radical cation species produced by the electron-transfer process. In contrast, the back-electron-transfer phenomenon, causing the decay of the radical cation, can be followed easily. The influence of the peptide helix electric field on this process should be reversed from the case of formation of the charge-separated state. Accordingly, the measured rate constants for charge recombination exhibit a ratio **P2A8/A2P8** of *ca*. 1.5. In summary, our results indicate that the electric field generated by the peptide helix has a significant effect on the electron-transfer rate for both the photoinduced charge separation process and the back-electron-transfer charge recombination.

It is interesting to relate these findings with those obtained for  $\alpha$ -helical peptides, where a ratio of eight between the two electron-transfer rates was observed [13][14]. Even if the two data sets are not strictly comparable, because of differences in the peptide sequence, the present results suggest that the  $3_{10}$ -helix has a lower effect than the  $\alpha$ -helix on the intramolecular electron-transfer process. This observation is in agreement with recent experiments performed by electrochemical methods on  $3_{10}$ helical peptides covalently linked to a gold surface [55], showing that the helix dipole moment affects the electron-transfer rate toward the gold substrate. Also in that case, the effect was lower in  $3_{10}$ -helical than in  $\alpha$ -helical peptides. Excluding possible differences between the  $3_{10}$ - and the  $\alpha$ -helix in the coupling provided by the peptide bridge for the long-range electron-transfer process, quantified by the tunneling parameter  $\beta$  [15], the observed differences between the two helical conformations are very likely due to the imperfect alignment of the peptide dipoles in the  $3_{10}$ -helix [3], leading to a lower overall electric field.

**Conclusions.** – Combination of various spectroscopic techniques (UV absorption, CD, IR absorption, nanosecond transient absorption, and steady-state and timeresolved fluorescence) allowed us to determine the effect of the electric field generated by a peptide  $3_{10}$ -helix on the rate of intramolecular electron-transfer reactions. The data obtained indicate that a significant effect of this electrostatic field takes place on the electron-transfer rates for both the photoinduced electron-transfer and the chargerecombination processes. However, this influence is lower than that previously observed for  $\alpha$ -helical peptides [13][14], probably because of the imperfect alignment of peptide dipoles in the  $3_{10}$ -helix, leading to a lower overall electrostatic field. These results could also be of relevance to electron-transfer processes across model and biological membranes induced by  $3_{10}$ - $/\alpha$ -helical peptiabiotics.

#### **Experimental Part**

General. Abbreviations: Aib,  $\alpha$ -Aminoisobutyric acid; ( $\alpha$ Me)Nva,  $C(\alpha)$ -methyl norvaline; Api, 1aminopiperidine-1-carboxylic acid; Azu, azulen-1-ylcarbonyl; BgO, N-benzhydrylglycolamide; Boc, (*tert*-butoxy)carbonyl; EDC, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride; HOAt, 7-aza-1-hydroxy-1,2,3-benzotriazole; NH'Bu, (*tert*-butyl)amino; O'Bu, *tert*-butoxy; PE, petroleum ether; Pyr, pyren-1-ylcarbonyl; TFA, trifluoroacetic acid; Z, (benzyloxy)carbonyl. Anal. TLC: silica gel *F254* (*Merck*); eluant systems: 10% EtOH/CHCl<sub>3</sub> (*I*); 20% AcOH, 60% butan-1-ol (*II*); 15% EtOH/toluene (*III*); UV detection (254 nm) for all compounds. Anal. HPLC: *Pharmacia LKB-LCC* chromatograph equipped with a *Uvicord SD* absorbance detector (226 nm); reversed-phase  $C_{18}$  Agilent Zorbax (5 µm) column (250 × 4.6 mm); eluant systems: 0.05% TFA/H<sub>2</sub>O (*A*); 0.05% TFA/10% H<sub>2</sub>O/MeCN (*B*); gradient 70 to 90% *B* in 25 min; flow rate: 1 ml/min. M.p.: *Leitz Laborlux 12* apparatus; determination with a temp. raise of 3°/min; uncorrected. [ $\alpha$ ]<sub>D</sub>: *Perkin-Elmer 241* polarimeter, 1-dm thermostatted cell. FT-IR Absorption spectra: solid-state IR by the KBr disk technique, with a *Perkin-Elmer 580 B* spectrophotometer equipped with a *Perkin-Elmer 3600* IR data station. <sup>1</sup>H-NMR Spectra: in CDCl<sub>3</sub> (99.96% D; *Aldrich*) at 400 MHz, *Bruker AM-400* spectrometer;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, *J* in Hz. MS: *Perseptive Biosystems Mariner* ESI-TOF. Physical data and anal. properties for the newly prepared peptides are listed in *Table 1*.

*Electronic Absorption.* All the electronic absorption experiments were carried out at r.t. on solns. in quartz cuvettes (optical pathlength 1 cm) with a *Cary 100* scan spectrophotometer. The concentrations of the solns. were typically  $10^{-5}-10^{-4}$  M. Extinction coefficient values were determined by using the *Lambert–Beer* law. The exper. error on the sample concentrations was estimated to be  $\pm 10\%$ .

*Circular Dichroism.* CD Spectra were recorded on a *Jasco J-600* dicrograph with a 0.1-cm pathlength quartz cell. Concentrations of peptide solns. were  $10^{-4}$  M.

*IR Absorption.* IR Absorption measurements in soln. were performed on a *Perkin-Elmer* model *1720* X FTIR spectrophotometer, N<sub>2</sub>-flushed, equipped with a sample-shuttle device, at  $2\text{-cm}^{-1}$  nominal resolution, averaging 100 scans. Solvent (baseline) spectra were obtained under the same conditions. Cells with pathlengths of 0.1, 1, and 10 mm (with CaF<sub>2</sub> windows) were used.

*Fluorescence.* Steady-state fluorescence spectra were recorded on a *SPEX Fluoromax* spectrofluorimeter, operating in the single photon counting mode. All experiments were performed using a thermostat at 298 K. Solns. were in quartz cuvettes (absorbance at excitation wavelength  $\approx 0.03$ ; optical pathlength 1 cm). Quantum yields were determined by using a fluorescent standard, the quantum yield of which was known, and the emission spectral properties of which closely matched those of the compound under investigation. The quantum yield of the sample is then operationally defined as:

## $\phi_{\rm s} = \phi_{\rm r} (A_{\rm r}/A_{\rm s}) (F_{\rm s}/F_{\rm r})(n_{\rm s}/n_{\rm r})^2$

where  $\phi$  is the quantum yield, A is the absorbance at the excitation wavelength, F is the integrated emission area across the band, n the refractive index of the solvent, and the subscripts s and r refer to the sample and the reference, resp. The reference used was anthracene in EtOH ( $\phi_0 = 0.27 \pm 0.03$ ). The exper. errors were  $\pm 15\%$ . Fluorescence decay was measured with a *CD900* single photon counting apparatus from *Edinburgh Analytical Instruments*. The excitation source was a gas discharge lamp (model *nF 900*) filled with ultrapure H<sub>2</sub> for excitation in the UV range. Under the exper. conditions (300 mm Hg gas pressure, 40 kHz repetition rate) used, the full-width half-maximum of the excitation profile was 1.2 ns. Decay curves were fitted by a non-linear least-squares analysis to exponential functions by an iterative deconvolution method. All experiments were carried out in quartz cells using solns. previously bubbled for 20 min with ultrapure N<sub>2</sub>.

*Transient Absorption.* Nanosecond transient absorption experiments were performed with an *LKS* 60 apparatus (*Applied Photophysics*) using a *Brilliant B Nd YAG Q*-switched laser (*Quantel*) equipped with a third harmonic generator module to obtain a 355-nm excitation light with a pulse duration of 4 ns (full-width half-maximum) and an energy of *ca.* 20 mJ. Monochromatic probe light was obtained by filtering the output of a 150-W pulsed Xe lamp through two consecutive monochromators, positioned one in front of and the other behind the sample (bandpass 3 and 3 mm).

We thank Prof. B. Pispisa (University of Rome, Tor Vergata) for many stimulating discussions. The financial contribution, *MIUR* (PRIN 2006) is also acknowledged.

1276

### REFERENCES

- [1] H. Duclohier, Chem. Biodivers. 2007, 4, 1023.
- [2] B. Leitgeb, A. Szekeres, L. Manczinger, C. Vagvölgyi, L. Kredics, Chem. Biodivers. 2007, 4, 1027.
- [3] C. Toniolo, E. Benedetti, Trends Biochem. Sci. 1991, 16, 350.
- [4] I. L. Karle, P. Balaram, Biochemistry 1990, 29, 6747.
- [5] Y. Paterson, S. M. Rumsey, E. Benedetti, G. Némethy, A. H. Scheraga, J. Am. Chem. Soc. 1981, 103, 2947.
- [6] L. Zhang, J. Hermans, J. Am. Chem. Soc. 1994, 116, 11915.
- [7] R. Improta, N. Rega, C. Aleman, V. Barone, Macromolecules 2001, 34, 7550.
- [8] C. Toniolo, M. Crisma, F. Formaggio, C. Peggion, Biopolymers (Pept. Sci.) 2001, 60, 396.
- [9] C. Toniolo, M. Crisma, G. M. Bonora, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, Biopolymers 1991, 31, 129.
- [10] C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni, G. Précigoux, A. Aubry, J. Kamphuis, *Biopolymers* 1993, 33, 1061.
- [11] C. Toniolo, M. Crisma, F. Formaggio, C. Peggion, Q. B. Broxterman, B. Kaptein, J. Inclusion Phenom. Macrocyclic Chem. 2005, 51, 121.
- [12] L. Stella, G. Bocchinfuso, E. Gatto, C. Mazzuca, M. Venanzi, F. Formaggio, C. Toniolo, A. Palleschi, B. Pispisa, in 'Annual Reviews in Fluorescence', Eds. C. D. Geddes and J. R. Lakowicz, Springer, New York, 2008, in press.
- [13] E. Galoppini, M. A. Fox, J. Am. Chem. Soc. 1996, 118, 2299.
- [14] E. Galoppini, M. A. Fox, J. Am. Chem. Soc. 1997, 119, 5277.
- [15] Y.-g. K. Shin, M. D. Newton, S. S. Isied, J. Am. Chem. Soc. 2003, 125, 3722.
- [16] B. Pispisa, 'Chimica Fisica Biologica', 3rd edn., Aracne, Rome, 2007.
- [17] T. S. Yokum, T. J. Gauthier, R. P. Hammer, M. L. McLaughlin, J. Am. Chem. Soc. 1997, 119, 1167.
- [18] M. A. Schmitt, S. H. Choi, I. A. Guzei, S. H. Gellman, J. Am. Chem. Soc. 2005, 127, 13130.
- [19] B. Kaptein, W. H. J. Boesten, Q. B. Broxterman, P. J. H. Peters, H. E. Schoemaker, J. Kamphuis, *Tetrahedron: Asymmetry* 1993, 4, 1113.
- [20] C. L. Wysong, T. S. Yokum, G. A. Morales, R. L. Gundry, M. L. McLaughlin, R. P. Hammer, J. Org. Chem. 1996, 61, 7650.
- [21] M. Amblard, M. Rodriguez, J. Martinez, Tetrahedron 1998, 44, 5101.
- [22] M. T. Leplawy, D. S. Jones, G. W. Kenner, R. C. Sheppard, Tetrahedron 1960, 11, 39.
- [23] A. Moretto, C. Peggion, F. Formaggio, M. Crisma, C. Toniolo, C. Piazza, B. Kaptein, Q. B. Broxterman, I. Ruiz, M. D. Diaz-de-Villegas, J. A. Galvez, C. Cativiela, J. Pept. Res. 2000, 56, 283.
- [24] L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397.
- [25] S. L. Murov, I. Carmichael, G. L. Hug, 'Handbook of Photochemistry', Dekker, New York, 1985.
- [26] E. W. Thulstrup, P. L. Case, J. Michl, Chem. Phys. 1974, 6, 410.
- [27] S. Y. Kim, G. Y. Lee, S. Y. Han, M. Lee, Chem. Phys. Lett. 2000, 318, 63.
- [28] A. A. Ruth, E.-K. Kim, A. Hese, Phys. Chem. Chem. Phys. 1999, 1, 5121.
- [29] C. Toniolo, A. Polese, F. Formaggio, M. Crisma, J. Kamphuis, J. Am. Chem. Soc. 1996, 118, 2744.
- [30] C. Toniolo, F. Formaggio, S. Tognon, Q. B. Broxterman, B. Kaptein, R. Huang, V. Setnicka, T. A. Keiderling, I. H. McColl, L. D. Barron, *Biopolymers* 2004, 75, 32.
- [31] R. W. Woody, Eur. Biophys. J. 1994, 23, 253.
- [32] S. Egusa, M. Sisido, Y. Imanishi, *Macromolecules* 1985, 18, 882.
- [33] S. Mizushima, T. Shimanouchi, M. Tsuboi, R. Souda, J. Am. Chem. Soc. 1952, 74, 270.
- [34] G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening, E. S. Stevens, Int. J. Biol. Macromol. 1984, 6, 179.
- [35] B. Pispisa, A. Palleschi, L. Stella, M. Venanzi, C. Mazzuca, F. Formaggio, C. Toniolo, Q. B. Broxterman, J. Phys. Chem., B 2002, 106, 5733.
- [36] B. Pispisa, C. Mazzuca, A. Palleschi, L. Stella, M. Venanzi, M. Wakselman, J.-P. Mazaleyrat, M. Rainaldi, F. Formaggio, C. Toniolo, *Chem. Eur. J.* 2003, 9, 4084.
- [37] S. L. Murov, I. Carmichael, L. H. Gordon, 'Handbook of Photochemistry', 2nd edn, Dekker, New York, 1993.

- [38] J. R. Lakowitz, 'Principle of Fluorescence Spectroscopy', Plenum Press, New York, 1994.
- [39] K. D. Kopple, M. Ohnishi, A. Go, Biochemistry 1969, 8, 4087.
- [40] G. P. Zanini, H. A. Montejano, C. M. Previtali, J. Photochem. Photobiol., A 2000, 132, 161.
- [41] Y. Mori, H. Shinoda, T. Nakano, T. Kitagawa, J. Phys. Chem., A 2002, 106, 11743.
- [42] H. A. Montejano, J. J. Cosa, H. A. Garrera, C. M. Previtali, J. Photochem. Photobiol., A 1995, 86, 115.
- [43] C. Borsarelli, H. A. Montejano, J. J. Cosa, C. M. Previtali, J. Photochem. Photobiol., A 1995, 91, 13.
- [44] I. Carmichael, W. P. Helman, G. L. Hug, J. Phys. Chem. Ref. Data 1987, 16, 239.
- [45] P. D. Adams, Y. Chen, K. Ma, M. G. Zagorski, F. D. Sonnichsen, M. L. McLaughlin, M. D. Barkley, J. Am. Chem. Soc. 2002, 124, 9278.
- [46] B. S. Hudson, J. M. Huston, G. Soto-Campos, J. Phys. Chem., A 1999, 103, 2227.
- [47] A. Sillen, J. Protein Sci. 2000, 9, 158.
- [48] B. Donzel, P. Gaudchon, P. Wahl, J. Am. Chem. Soc. 1974, 96, 801.
- [49] A. G. Szabo, D. M. Rayner, J. Am. Chem. Soc. 1980, 102, 554.
- [50] B. D. Wagner, D. T. Helmrich, R. Steer, J. Phys. Chem. 1992, 96, 7904.
- [51] P. A. Muller, E. Vauthey, J. Phys. Chem., A 2001, 105, 5994.
- [52] T. Okada, I. Karaki, N. Mataga, J. Am. Chem. Soc. 1982, 104, 7191.
- [53] R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.
- [54] J. R. Bolton, M. Mataga, G. McLennon, 'Electron Transfer in Inorganic, Organic and Biological Systems', American Chemical Society, Washington, DC, 1991.
- [55] E. Gatto, L. Stella, F. Formaggio, C. Toniolo, L. Lorenzelli, M. Venanzi, J. Pept. Sci. 2008, 14, 184.

Received December 19, 2007